MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1
نویسندگان
چکیده
MicroRNAs (miRNAs) are involved in the fine control of cell proliferation and differentiation during the development of the nervous system. MiR-124, a neural specific miRNA, is expressed from the beginning of eye development in Xenopus, and has been shown to repress cell proliferation in the optic cup, however, its role at earlier developmental stages is unclear. Here, we show that this miRNA exerts a different role in cell proliferation at the optic vesicle stage, the stage which precedes optic cup formation. We show that miR-124 is both necessary and sufficient to promote cell proliferation and repress neurogenesis at the optic vesicle stage, playing an anti-neural role. Loss of miR-124 upregulates expression of neural markers NCAM, N-tubulin while gain of miR-124 downregulates these genes. Furthermore, miR-124 interacts with a conserved miR-124 binding site in the 3'-UTR of NeuroD1 and negatively regulates expression of the proneural marker NeuroD1, a bHLH transcription factor for neuronal differentiation. The miR-124-induced effect on cell proliferation can be antagonized by NeuroD1. These results reveal a novel regulatory role of miR-124 in neural development and uncover a previously unknown interaction between NeuroD1 and miR-124.
منابع مشابه
The role of miR-124a in early development of the Xenopus eye
It has been reported that miR-124a is abundant in the central nervous system including the eye, and is related to neurogenesis in several species. However, the role of miR-124a in the eye remains unclear. In this study, we show that the expression of miR-124a in Xenopus laevis begins along the neural fold, including the protruding eye anlagen, at a low level at around stage 18; its expression l...
متن کاملThe miR-124 family of microRNAs is crucial for regeneration of the brain and visual system in the planarian Schmidtea mediterranea
Brain regeneration in planarians is mediated by precise spatiotemporal control of gene expression and is crucial for multiple aspects of neurogenesis. However, the mechanisms underpinning the gene regulation essential for brain regeneration are largely unknown. Here, we investigated the role of the miR-124 family of microRNAs in planarian brain regeneration. The miR-124 family (miR-124) is high...
متن کاملRole of miRNA-9 in Brain Development
MicroRNAs (miRNAs) are a class of small regulatory RNAs involved in gene regulation. The regulation is effected by either translational inhibition or transcriptional silencing. In vertebrates, the importance of miRNA in development was discovered from mice and zebrafish dicer knockouts. The miRNA-9 (miR-9) is one of the most highly expressed miRNAs in the early and adult vertebrate brain. It ha...
متن کاملStudy the Efect of Retinoeic Acid and Mitogenes on Lens and Optic Vesicle of Mouse Embryo(Nmri) and Fos Protein Expression In Culture Medium
Purpose: This work studies possible role of FOS proteins, retinoic acid (RA) and mitogens during optic vesicle development in vitro. Materials and Methods: Fos was detected as a product of 55-62 kDa in optic vesicles via electrophoretic procedures. Incubation (24hr) of optic vesicles with RA 25nM and mitogens(serum10%,insulin2.5%) on the day 9.5 of gestation revealed that Fos was induced by mi...
متن کاملRole of retinoic acid during forebrain development begins late when Raldh3 generates retinoic acid in the ventral subventricular zone.
Retinoic acid (RA) synthesized by Raldh3 in the frontonasal surface ectoderm of chick embryos has been suggested to function in early forebrain patterning by regulating Fgf8, Shh, and Meis2 expression. Similar expression of Raldh3 exists in E8.75 mouse embryos, but Raldh2 is also expressed in the optic vesicle at this stage suggesting that both genes may play a role in early forebrain patternin...
متن کامل